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Accumulating evidence from clinical studies and pre-clinical animal models supports a role
for neuropeptide Y (NPY) in adaptive emotional response following stress. The long-term
impact of stress, particularly chronic stress, on availability, and function of resilience factors
such as NPY may be critical to understanding the etiology of stress-related psychopathol-
ogy. In these studies, we examined expression of NPY during recovery from a chronic
variable stress (CVS) model of repetitive trauma in rats. Due to the importance of amygdala
and prefrontal cortex in regulating emotional responses, we predicted chronic changes in
NPY expression could contribute to persistent behavioral deficits seen in this model. Con-
sistent with the hypothesis, ELISA for NPY peptide identified a significant reduction in NPY
at the delayed (7 days) recovery time-point. Interestingly, a significant increase in prefrontal
NPY was observed at the same recovery time-point. The mRNA expression for NPY was
not changed in the amygdala or PFC, although there was a modest but not statistically
significant increase in NPY mRNA at the delayed recovery time-point in the prefrontal cor-
tex. The observed changes in NPY expression are consistent with maladaptive coping and
enhanced emotionality, due to the nature of NPY signaling within these respective regions,
and the nature of reciprocal connections between amygdala and prefrontal cortex.
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INTRODUCTION
Accumulating evidence from pre-clinical and clinical studies
implicates neuropeptide Y (NPY) as an important stress resiliency
factor/hormone. NPY acts directly in limbic forebrain structures,
antagonizing the actions of pro-anxiety hormone, corticotropin-
releasing hormone (CRH) (Heilig, 2004; Giesbrecht et al., 2010)
working to maintain balance between pro- and anti-anxiety sig-
naling and helping to regulate emotional state (Sajdyk et al., 2004).
Additionally, NPY in the amygdala regulates the expression of fear
responses (Fendt and Fanselow, 1999). Animals over-expressing
NPY in forebrain regions (Thorsell et al., 2000) or exclusively in
the amygdala (Primeaux et al., 2005) are resistant to anxiogenic
stress as measured in pharmacologically validated behavioral tests
of rodent anxiety. Recent studies in humans corroborate the data
from animal studies. A variant allele in the promoter region of NPY
is linked to higher trait anxiety (Zhou et al., 2008), and increased
psychopathology after adversity in analyses of gene × environment
interaction (Sommer et al., 2010). Interestingly, lower haplotype-
driven NPY expression predicted higher emotion-induced activa-
tion of the amygdala, as wells as higher neuroticism scores and
diminished resiliency (Zhou et al., 2008). Reduced concentra-
tions of NPY are observed in cerebrospinal fluid of posttraumatic
stress disorder (PTSD) patients (Sah et al., 2009) and in plasma
of trauma exposed individuals (Morgan III et al., 2003). Increased
plasma NPY levels are correlated with symptom improvement in

individuals with past PTSD, supporting an association of NPY
with coping and resilience (Yehuda et al., 2006). Collectively, a
considerable body of evidence supports the relevance of NPY as
an important regulator of stress and fear responses.

Stress-associated psychopathologies are often associated with
inadequate stress coping and failure to recover from traumatic
life events. Optimal function of putative resiliency factors such
as NPY may be essential for adequate reactivity to and recovery
from stress. In this regard, it is important to investigate how stress
impacts long-term expression of NPY. This is particularly relevant
for repeated stress exposure, where depletion of stress buffering
systems are likely.

In this report we investigated regulation of NPY expression after
cessation of chronic stress, where factors influencing resilience
would be most critical for recovery. We used a chronic vari-
able stress (CVS) paradigm recently developed by our group as a
model of chronic traumatization and posttraumatic-like phenom-
ena (McGuire et al., 2010). Exposure to CVS produces a delayed
expression of enhanced fear reinstatement and fearful arousal,
behaviors that may be impacted by a dysregulation in NPY. To
test the hypothesis that repeated stress would dysregulate neural
NPY systems, NPY mRNA, and peptide expression were mea-
sured at early and delayed recovery time-points in the amygdala
and prefrontal cortex, brain regions implicated in posttraumatic
pathophysiology (Shin et al., 2006; Liberzon and Sripada, 2008).
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In support of our hypothesis, central NPY systems manifest alter-
ations in mRNA and protein expression during recovery from CVS
in both amygdala (down-regulation) and PFC (up-regulation),
both of which are consistent with exaggerated stress responsiveness
observed in this model.

MATERIALS AND METHODS
THE CVS MODEL
Subjects were male Long–Evans rats between 225 and 250 g (Har-
lan, Indianapolis, IN, USA). Animals were housed in a climate-
controlled vivarium on a 12:12 light dark cycle, lights on 6:00 a.m.
All procedures were reviewed and approved by the University of
Cincinnati animal care and use committee.

The CVS model was as previously described (McGuire et al.,
2010). Subjects were randomly assigned to weight matched
control and chronic stress groups. Briefly, experimental ani-
mals underwent two stressors a day, morning, and afternoon,
for 7 days. Morning and afternoon stressors were administered
between 0900–1100 and 1400–1600 hours, respectively. Stressors
were selected to include both primarily anxiogenic and primarily
physiologic stressors, including restraint, hypoxia, forced swim-
ming, cold, temporary crowding, and agitation of the cages. In
addition to the daily stressors, twice during the CVS period the
animals were housed overnight in a confined space (a mouse
shoebox cage). Overnight stressors began immediately after cessa-
tion of afternoon stressors and terminated at the initiation of the
next day’s morning stressor. Within the CVS and control groups,
animals were further subdivided in early and delayed recovery
time-points and sacrificed at either 24 h (early) or 7 days (delayed)
after termination of CVS. Brains were rapidly isolated: a mid-
line sagittal incision was made to divide the brain into two equal
halves that were then rapidly flash frozen in isopentane on dry ice.
One half was processed for NPY ELISA for peptide concentrations
while the other was subjected to in situ hybridization for mRNA
levels. The samples were randomized between the two procedures
to overrule any lateralization effects.

ELISA FOR MEASUREMENT OF NPY PEPTIDE CONCENTRATION
The brains were kept frozen until transfer into acid for extrac-
tion of the NPY peptide. The amygdala and prefrontal cortex
were dissected from cryostat-sliced sections using bregma −2.12 to
−3.6 (amygdala) and 3.20 to 2.20 (PFC) as stereotaxic coordinates
(Paxinos and Watson, 1998). Dissected tissue was homogenized in
200–300 μl of 0.2 M HCl. The homogenates were boiled for 5 min
and cooled on ice. Ten microliter aliquots were removed for later
analysis of total protein concentrations. Remaining supernatants
were then lyophilized overnight in a speed vac to ensure complete
drying. Dried extracts were stored at −80˚C until ELISA assay.

Frozen samples were re-constituted with ELISA buffer and used
for NPY ELISA (Peninsula Laboratories, San Carlos, CA, USA) as
described previously (Sah et al., 2009). Homogenate volumes for
ELISA were optimized in preliminary runs for each region such
that OD readings were obtained within the linear section of the
NPY standard curve. Peptide concentration was determined from
plotting optical density of unknown samples against a 10 point
standard curve for NPY. Total protein was determined by Brad-
ford protein assay. Data was calculated for nanogram NPY per mg

protein. Samples from Control and CVS exposed animals were
tested for post-CVS early and delayed recovery.

IN SITU HYBRIDIZATION
Brain samples were coronally sectioned at 14 μm on a Leica 3050
cryostat, mounted on Fisherbrand Superfrost-Plus-charged glass
slides (Hampton, NH, USA), and stored at −20˚C until further
analysis. Prior to hybridization, sections were thawed to room tem-
perature and fixed for 15 min in 4% paraformaldehyde. Sections
were then rinsed 2 × 5 min in 5 mM DEPC-treated potassium
phosphate buffered saline (KPBS), 2 × 5 min in PBS containing
0.2% glycine, followed by 2 × 5 min in KPBS. Sections were acety-
lated for 10 min in triethanolamine (0.1 M, pH 8.0), containing
0.25% acetic anhydride, rinsed twice in SSC buffer (0.25 M sodium
chloride, 0.015 sodium citrate, pH 7.2) for 5 min, followed by
dehydration in a graded ethanol series. Sections were re-hydrated
to 70% ethanol and then air-dried. Antisense rat NPY riboprobes
were generated (complimentary to bp 20–532 of the NPY sequence
Accession #M15880) by in vitro transcription using 35S-labeled
UTP. Riboprobe 35S percent incorporation was determined with
TCA precipitation. Labeled probes were added to a hybridiza-
tion buffer containing 50% formamide, 20 mM Tris–HCl, pH 7.5,
1 mM EDTA, 335 mM NaCl, 1× Denhardt’s solution, 200 μg/ml
fish sperm DNA, 150 μg/ml yeast transfer RNA, 20 mM dithiothre-
itol, and 10% dextran sulfate. Probes were denatured for 15 min
at 65˚C and 50 μl (1 × 106 cpm) of diluted probe applied to each
slide. Slides were coverslipped, placed in moistened chambers, and
incubated overnight at 55˚C. After hybridization, coverslips were
removed in 0.2× SSC, and rinsed in fresh 0.2× SSC for 10 min.
Sections were then treated with RNase A (50 μg/ml) for 30 min at
37˚C, and transferred to fresh 2× SSC and then rinsed three times
in 0.2× SSC (10 min/wash), followed by a 1-h wash in 0.2× SSC at
65˚C. Finally, sections were dehydrated in a graded ethanol series,
dried at room temperature, and exposed for 4–6 days to Kodak
BioMAX film (Eastman Kodak, Rochester, NY, USA).

IMAGE ANALYSIS
Film images of brain sections were captured by digital camera.
Semi-quantitative microdensitometry analysis for autoradiograph
images was performed using Scion Image (Alpha 4.0.3.2; Scion,
Frederick, MD, USA) software. Brain regions were identified using
the Paxinos and Watson rat brain atlas. Each identified region
of interest was analyzed by subtracting the non-hybridized tissue
(background) from the hybridized signal within the same brain
section, and data were expressed as corrected gray level (CGL).
Multiple brain sections were analyzed per region per animal. Aver-
age CGL values were calculated in series for the amygdala and
prefrontal cortex. 14C standards were developed with each film
and analyzed for CGL to confirm that all measured gray levels
were within the linear range of the film.

STATISTICAL ANALYSIS
Data for NPY ELISA and in situ hybridization for each region
was analyzed by unpaired t -test for the early and delayed recov-
ery time-point using stress as the variable. Data is expressed as
mean ± standard error of the mean (SEM). Criterion for statistical
significance was p < 0.05.
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RESULTS
To investigate the regulation of NPY mRNA and peptide in the
same animals, brains were bisected in the midline. As a predicted
stress resilience factor, it was hypothesized that NPY would be
regulated in the amygdala and PFC following traumatic stress,
and that these alterations may persist into later recovery. There-
fore tissue was collected at timepoints early and later in recovery
as depicted in Figure 1A. Consistent with this hypothesis, NPY
content in the amygdala showed a significant reduction (38.4%)
at the delayed recovery time-point in the amygdala (Figure 1B).
Unpaired t -test with stress as the variable revealed significant
depletion at this recovery point (t = 2.258; p < 0.05). There was
a reduction NPY content at the early time-point (32.2%), but
that did not reach statistical significance. In contrast to the amyg-
dala, NPY peptide concentration in the PFC was significantly
upregulated (128.3%) at delayed recovery (t = 2.761; p < 0.05 by
unpaired t -test), while no changes were noted at early recovery
(Figure 1B). To reveal whether alterations in NPY peptide were
accompanied by changes in NPY synthesis within the region, NPY
mRNA expression was measured in contralateral sections from the
same animals (Figure 2). No significant changes in NPY mRNA
density were observed at the early recovery time point in the amyg-
dala or the PFC. However, the change in PFC NPY at the 7-day
delayed recovery time-point approached statistical significance
(p = 0.09).

FIGURE 1 | Changes in NPY protein in early and delayed recovery from

chronic variable stress (CVS) (A). Schematic of experimental design and
tissue collection. (B). Significant changes in NPY tissue content emerge
during recovery from CVS. NPY is decreased in amygdala (a) and increased
in prefrontal cortex (b) 7 days after cessation of CVS as measured by ELISA.
NPY content is not different in either region when tested 16 h after CVS
completion. “*” Indicates p < 0.05. Data is represented as mean ± SEM.

DISCUSSION
Investigating neural factors associated with recovery and resilience
constitutes an important scientific priority for developing treat-
ments for stress-induced disorders, especially PTSD. Here we
report that exposure to chronic intermittent stress in an unpre-
dictable fashion can induce long-term alterations in the putative
resiliency factor NPY, in limbic brain areas that regulate behav-
ioral, physiological, and cognitive effects of stress and trauma.
There are two main findings of our study: first, that significant
NPY dysregulation was noted well into the recovery period when
restoration and normalization would be expected, and in some
cases (PFC) NPY dysregulation appears to be emergent over the
recovery period. Second, the amygdala and PFC elicit differential
NPY responses to chronic stress that may be caused by different
mechanisms. Importantly, dysregulation of NPY is temporally co-
incident with the expression of enhanced fear recall and emotional
arousal that we previously reported in this model (McGuire et al.,
2010).

The trajectory of NPY regulation following stress was inves-
tigated in the amygdala and PFC based on (a) their well estab-
lished role in regulation of stress homeostasis and relevance
in stress-induced disorders such as PTSD (Shin et al., 2004;

FIGURE 2 | In situ hybridization for NPY mRNA in amygdala and

prefrontal cortex during recovery from CVS. (A). Representative images
of NPY in situ hybridization from control and CVS animals. (B). Levels of
NPY mRNA did not differ between CVS and control brains in basolateral,
medial, or central amygdala in either early or delayed recovery. (C). NPY
mRNA in the prefrontal cortex did not differ between control and CVS
animals in early and delayed recovery. However there was a trend toward
increase in NPY mRNA in later recovery when NPY peptide was also
increased. “#” Indicates p = 0.09. Data is represented as mean ± SEM.
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Eaton et al., 2007), (b) a defined role of NPY in the control of
excitability and pro-stress transmitters in these regions (Bacci
et al., 2002; Chung and Moore, 2009; Giesbrecht et al., 2010),
and (c) preliminary experiments revealing the absence of per-
sistent CVS-induced regulation of NPY content in other limbic
regions such as the hippocampus and hypothalamus (data not
shown).

Decreased NPY concentration in the amygdala was observed at
delayed post-stress recovery, accompanied by no changes in NPY
mRNA synthesis. Since intra-amygdalar NPY mRNA remained
unaffected by CVS, reduced NPY peptide content may be a poten-
tial outcome of reduced transport via afferent projections to the
amygdala. NPY innervation from extra-amygdalar sources has
been proposed, although the exact source of afferent inputs are
not yet identified (Leitermann et al., 2009; Rostkowski et al., 2009).
Reduction of NPY peptide content in the absence of reduced
synthesis could also be due to an increase in proteolytic degra-
dation. Previous studies have reported that NPY effects in the
CNS are modulated by dipeptidyl peptidase IV. DPPIV-like enzy-
matic activity is responsible for the cleavage of NPY (Karl et al.,
2003). A previous study reported increased NPY mRNA and
protein in the amygdala following repeated restraint stress for 9–
10 day (Thorsell et al., 1999). This increase was described as an
adaptive functional response that coincided with the absence of
behavioral and neuroendocrine deficits that were evident after
acute restraint episode. It is possible that paradigms support-
ing habituation may produce enhanced NPY expression in the
amygdala and possibly NPY function. On the other hand, CVS
paradigms favor sensitized responses without habituation. This
is supported by the delayed expression of sensitized emotional
and neuroendocrine responses evoked by CVS in our paradigm
(McGuire et al., 2010). Other studies have reported increased
NPY concentrations and NPY-immunoreactive fibers in the amyg-
dala 7 day following single prolonged stress exposure (Cui et al.,
2008) and elevated NPY mRNA at 2 weeks following single
session of multiple footshocks (de Lange et al., 2008). Thus,
it is possible that engagement of the putatively “pro-adaptive”
NPY system is dependent on stressor modality, duration, and
intensity.

We also observed significant increases in NPY peptide and trend
toward increase in mRNA expression in the prefrontal cortex at
7 day post-CVS cessation. Impact of chronic stress on the expres-
sion of NPY in the PFC has not been investigated previously.
Interestingly, modulation of stress on NPY content in the PFC
was in the opposite direction as observed in the amygdala. While
the exact mechanism for this differential regulation is unclear, we
also observed a modest increase in NPY mRNA expression at the
same time-point suggesting that increased NPY synthesis may con-
tribute to this effect. Acute stress-induced decrease in cortical NPY
mRNA has been reported earlier, however this normalized at 10 h
post-stress (Thorsell et al., 1998). The delayed up-regulation of
NPY thus appears to be a result of long-term plasticity within the
PFC. Exposure to chronic stress has been shown to induce struc-
tural and functional plasticity in this area (Goldwater et al., 2009).
These long-term neuroplastic alterations may be accompanied
by altered synthesis and content of transmitter systems such as
NPY.

IMPLICATIONS OF CVS-EVOKED NPY DYSREGULATION
In recent years, a prominent role of neuropeptides such as NPY
in integrating stress and emotion has emerged (Sajdyk et al.,
2004; Alldredge, 2010). Using genetic, behavioral, electrophysi-
ological, and pharmacological approaches, previous studies have
determined that NPY in the amygdala promotes successful adap-
tation to the acute and cumulative effects of stress, anxiolysis, and
attenuation of fear (Sajdyk et al., 2008; Fendt et al., 2009; Gies-
brecht et al., 2010; Tasan et al., 2010). Persistent reductions in
chronic stress evoked NPY in this region would therefore com-
promise both resiliency to stress as well as induce potentiated
fear responses. Exposure to CVS gives rise to exaggerated fear
responses and recall following 1 week of recovery (McGuire et al.,
2010). These effects are evident at a time when compromised NPY
may promote increased excitatory tone in the amygdala leading to
sensitized fear responses.

The physiological consequences of NPY expression in the PFC
are less well understood. Classification of NPY-expressing cells
in the PFC reveals a diverse population of interneurons that are
exclusively GABAergic (Karagiannis et al., 2009). NPY elicits a
long lasting decrease in evoked excitatory postsynaptic currents
through calcium-dependent increase in GABAergic signaling as
well as a delayed long lasting increase in inhibitory postsynap-
tic current (Bacci et al., 2002). Each of these NPY actions would
decrease excitability in cortical circuits and output. Significant
decrements in synaptic function and neural activity have been
reported in the PFC by chronic stress (Wilbur et al., 2011).
Increased NPY expression in prefrontal circuits may induce per-
sistent inhibition and reduced excitability leading to dampened
PFC output. Given the relevance of PFC in modulating behavioral
and neuroendocrine consequences of stress, reduced PFC activity
is expected to result in emotional arousal as well sensitization of
the hypothalamic pituitary adrenal axis (HPA) responses (Radley
et al., 2009; Sotres-Bayon and Quirk, 2010). In agreement with
this, we have observed exaggerated fear responses, as well as sensi-
tized HPA responses at the delayed recovery time-point post-CVS
(McGuire et al., 2010).

The CVS-recovery paradigm was developed by our group to
model chronic traumatization insults and posttraumatic-like out-
comes. As described before, this paradigm produces selective
effects related to fear memory reinstatement as well as fear-
ful arousal while no significant effects on anxiety are observed
(McGuire et al., 2010). NPY in the amygdala has been reported
to regulate fear-associated behaviors in several paradigms (Heilig
et al., 1992; Britton et al., 2000; Gutman et al., 2008; Fendt et al.,
2009) Since NPY has been reported to counteract and contain the
effects of stress mediators like CRH (Sajdyk et al., 2004; Gies-
brecht et al., 2010) in limbic regions such as the amygdala, it
is likely to be released during acute stress responses. However,
long-term exposure to stress may dysregulate the NPY system,
resulting in reduced inhibition of pro-stress transmitters, and vul-
nerability to the effects of stress. Although we did not measure
CRH or NE in our current studies, others have reported an up-
regulation of amygdalar CRH expression following chronic stress
(Gray et al., 2010; Wang et al., 2010). Chronic stress induces last-
ing changes in catecholaminergic neuron structure, and function,
particularly in the forebrain (Goldstein et al., 1996; Miner et al.,
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2006; Aborelius and Eklund, 2007; Goldwater et al., 2009; Lee et al.,
2011), Additionally, increased tonic expression of CRH and NE is
associated with a reduced threshold for arousal (van Gaalen et al.,
2002; Dierssen et al., 2006). Persistent reduction in amygdalar NPY
in the face of enhanced CRH and NE tone will promote exag-
gerated fear and arousal-associated behaviors that were reported
in this model by our group. Likewise, control of excitatory ver-
sus inhibitory balance in the cortical output by NPY would be
impacted by derangements in NPY that emerge and persist well
after stress cessation.

By comparing early and delayed expression of NPY message
and protein it is evident that regional disparity exists in how
NPY responds to chronic stress. While early decrements in amyg-
dalar NPY are exacerbated with recovery (suggesting depletion),
there might exist delayed neuroadaptive changes in the PFC. It is

interesting to note that even though these changes are in opposite
directions the net outcome may result in enhanced emotional reac-
tivity and sensitized neuroendocrine responses. Another implica-
tion of the current study is that dysregulation of limbic NPY may
lead to increased vulnerability to subsequent stress or reduced
resilience.

In conclusion, persistent dysregulation of NPY, that exists well
after cessation of repeated stress may lead to impaired emotional
homeostasis and confer vulnerability to subsequent trauma given
the stress buffering role of NPY.
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